Novel Seco Cyclopropa[c]pyrrolo[3,2-e]indole Bisalkylators Bearing a 3,3'Arylenebisacryloyl Group as a Linker

Yasumichi Fukuda,* Shigeki Seto, Hirosuke Furuta, Hiroyuki Ebisu, Yasuo Oomori, and Shiro Terashima ${ }^{\dagger}$
Central Research Laboratories, Kyorin Pharmaceutical Company Ltd., Mitarai, Nogi, Tochigi 329-0114, J apan, and
Sagami Chemical Research Center, Nishi-Ohnuma, Sagamihara, Kanagawa 229-0012, J apan

Received October 11, 2000

Abstract

We synthesized the novel seco cyclopropa[c]pyrrolo[3,2-e]indole (CPI) bisalkylators and evaluated their antitumor activity. Among these derivatives, 11a (AT-760), in which the two seco 3-methoxycarbonyl-2-trifluoromethyl CPI (MCTFCPI) moieties are connected with a 3,3'-(1,4-phenylene)bisacryloyl group, was found to exhibit more potent cytotoxicity and antitumor activity against HeLaS3 human uterine cervix carcinoma cells and Colon 26 adenocarcinoma cells, respectively, than 8 (bizelesin, U-77,779). It also appeared that compound 11a exhibits improved in vivo efficacy in the human colon CX-1 model when compared to either compound 8 or mitomycin C (MMC). Efficacious doses for 11a were found to be 2 -fold lower than those for 8 .

Introduction

The antitumor antibiotics $\mathbf{1}$ (CC-1065), ${ }^{1} 2$ (duocarmycin A), ${ }^{2}$ and $\mathbf{3}$ (duocarmycin SA), ${ }^{3}$ carrying a cyclo-propa[c]pyrrolo[3,2-e]indole (CPI) moiety as the common pharmacophore, are isolated from Streptomyces sp. The CPI derivatives have been recognized as monoal kylators whose CPI systems are responsible for their potent cytotoxicity through sequence-selective alkylation of double-strand DNA. ${ }^{4}$ The seco-type CPI derivatives 5 (carzelesin, U-80,244) ${ }^{5}$ and $\mathbf{6}$ (KW-2189) ${ }^{6}$ derived from $\mathbf{1}$ and 2, respectively, are presently under clinical trials (Chart 1). Recently, we reported the synthesis and antitumor activity of the novel seco 3-methoxycarbonyl-2-trifluoromethyl CPI (seco MCTFCPI) derivative 7 (AT3510) showing antitumor activity against human tumor xenografts more potent than that of $\mathbf{5}$ or $\mathbf{6}$ or the clini cally widely used anticancer agent cisplatin (Chart 2). ${ }^{7}$ It has been considered that the seco-type CPI derivatives serve as ring-opened prodrugs of corresponding cytotoxic CPI derivatives. $6 \mathrm{bb}, 8 \mathrm{a}, \mathrm{d}$
It is reported that 8 (bizelesin, U-77,779), in which two alkylating moieties are connected with a linker, a 1,3-bis(2-carbonyl-1H-indol-5-yl)urea group, behaves as a bisalkylator. ${ }^{8}$ The antitumor activity of 8 against L1210 murine leukemia cells is obviously superior to that of other CPI mono- and bisalkylators. ${ }^{8}$ The bisalkylator $\mathbf{8}$ is presently in phase I clinical trials. ${ }^{8 \mathrm{~d}}$ M ore recently, we reported the synthesis and antitumor activity of the novel seco MCTFCPI bisalkylator $9 .{ }^{9}$ In this compound, the two seco MCTFCPI groups are connected with a linker, the 5,5'-bis(2-carbonyl-1H-indole) group. We found that 9 shows more potent antitumor activity than does 8 (Chart 3). Based on our studies, it is evident that the length of a linker has a more significant influence on cytotoxicity and antitumor activity rather than does the type of linker. ${ }^{9}$ Therefore, with the aim of exploring the novel seco CPI bisalkylators show-

[^0]ing even more potent antitumor activity than $\mathbf{8}$ and $\mathbf{9}$, we designed and synthesized the seco MCTFCPI bisalkylator 11a carrying a 3,3'-(1,4-phenylene)bisacryloyl group whose length is shorter than that in 9. ${ }^{10}$ Taking into account the potent antitumor activity of 11a, we carried out the synthesis of the various seco CPI bisalkylators $\mathbf{1 0}$ bearing the same 3,3'-(1,4-phenylene)bisacryloyl group as a linker (Chart 4). ${ }^{10}$ On the basis of the results of these studies, we next investigated the synthesis and evaluation of the antitumor activity of novel seco MCTFCPI bisalkylators 11b-q to clarify the structure-activity relationships (SARs) of the linker part of the MCTFCPI bisalkylators. Herein, we report on the synthesis and antitumor activity of 11a-q. Among them, 11a (AT-760) was found to exhibit more potent cytotoxicity and antitumor activity against HeLaS3 human uterine cervix carcinoma cells and Col on 26 adenocarcinoma cells, respectively, than 8 and less toxicity than 9 . It also appeared that, in the human colon CX-1 model, 11a exhibits more potent activity than does mitomycin C and similar activity to 8.

Results and Discussion

Chemistry. We synthesized seco MCTFCPI bisalkylators 11b- \mathbf{q} following the procedure for synthesizing 11a reported in our earlier paper. ${ }^{10}$ Deprotection of the optically pure 12 under acidic conditions gave the indoline $\mathbf{1 3}$ as its hydrochloride. This was immediately coupled with various $3,3^{3}$-arylenebisacrylic acids 14b-q in the presence of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (EDCI) to afford the seco MCTFCPI bisalkylators 11b-q (Scheme 1).
While $3,3^{3}$-(1,4-phenylene)bisacrylic acid (14a) is commercially available, the synthesis of $\mathbf{1 4 c}-\mathbf{e}, \mathbf{m}-\mathbf{q}$ was accomplished by employing a Heck reaction of various diazonium salts (for 14d), bistriflates (for 14e, m, n,p,q), or dibromides (for $\mathbf{1 4 c}, \mathbf{0}$) and by employing a Doebner reaction of various dial dehydes (for $\mathbf{1 4 b}, \mathbf{f}-\mathbf{l}$). Thus, the Heck reaction of 1,2-dibromobenzene $\mathbf{1 5}$ with ethyl acrylate provided diethyl ester 16c. The synthesis of diethyl ester 16d was achieved from 1,2-diphenylhy-

Chart 1

Chart 2

7

Chart 3

8: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{X}=\mathrm{NHCONH}$
9: $\mathrm{R}^{1}=\mathrm{CF}_{3}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{X}=-$

Chart 4

10a-e
a: $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} ; \mathbf{b}: \mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{c}: \mathrm{R}^{\mathrm{I}}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$;
$\mathrm{d}: \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me} ; \mathrm{e}: \mathrm{R}^{1}=\mathrm{R}^{2}=$
drazine (17) according to the reported method, ${ }^{11}$ with slight modification to avoid the isolation of carcinogenic benzidine. The homo-coupling reaction of the 2-bromopyridine $\mathbf{2 0}^{12}$ in the presence of $\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ cleanly provided the bipyridyl derivative 21. This was converted to bistriflate 23e by sequential treatments with 47\% HBr and triflic anhydride. Bistriflates 23m,n,p were
prepared directly from the corresponding 1,4-quinones 24, 25, and 29 without isolation of the unstable hydroquinones $\mathbf{2 6 m} \mathbf{m}, \mathbf{p}$. The synthesis of bistriflate $\mathbf{2 3} \mathbf{q}$ was achieved according to the reported method. ${ }^{13}$ A Heck reaction of these bistriflates 23e,m,n,p,q with ethyl acrylate smoothly took place to give diethyl esters $\mathbf{1 6 e , m}, \mathbf{n}, \mathbf{p}, \mathbf{q}$. Unfortunately, a Heck reaction of bistriflate $\mathbf{2 3 0}$ was found to give 9,10-anthraquinone $\mathbf{2 8}$ as the sole product instead of the expected diethyl ester 160 under these conditions. The Heck reaction of 9,10di bromoanthrathene(27), however, cleanly provided the desired 160. The resulting diethyl esters $\mathbf{1 6 c} \mathbf{-} \mathbf{e}, \mathbf{m}-\mathbf{q}$ were hydrolyzed under basic conditions to afford the bisacrylic acids $\mathbf{1 4 c}-\mathbf{e}, \mathbf{m}-\mathbf{q}$. The synthesis of dialdehydes $\mathbf{3 2 h} \mathbf{- j}$ was achieved by alkylation of dimethyl 2,3dihydroxyterephthalate (30) ${ }^{14}$ in the presence of cesium carbonate, followed by reduction with Red-AI/N-methylpiperazine reagent. The syntheses of dialdehydes 32f,g and bisacrylic acid 14k were carried out according to the reported procedure, ${ }^{15}$ as was the synthesis of dialdehyde 32I. ${ }^{16}$ Thus, treatment of the bisoxazolidine derivative 34 derived from 2,3-dimethoxyterephthal oyl dichloride (33) ${ }^{17}$ with ethylmagnesium bromide cleanly produced the diethyl derivative 35. This was converted to dialdehyde 32I by alkylation with methyl iodide and subsequent reduction with sodium borohydride. The Doebner reaction of dialdehydes $\mathbf{3 2 b}, \mathbf{f}-1$ cleanly provided the corresponding 3,3'-arylenebisacrylic acids 14b,f-I.
Cytotoxicity. The results of cytotoxicity assay of the seco MCTFCPI bisalkylator 11a and the newly synthesized derivatives $\mathbf{1 1 b} \mathbf{- q}$ against HeL aS3 human uterine cervix carcinoma cells are summarized in Table 1. The bisalkylator 11a bearing a 3,3'-(1,4-phenylene)bisacryloyl group exhibited more potent cytotoxicity than did 8 or 9. The strong cytotoxicity observed for 11a disappeared in its positional isomers $\mathbf{1 1 b}, \mathbf{c} .{ }^{10}$ Cytotoxicity of the bisalkylators 11d,f,g, in which one or more phenylene group(s) are added to the linker of 11a, reduced dramatically. The bipyridyl analogue 11e showed superior cytotoxicity to the corresponding biphenyl derivative 11d. Cytotoxicity of $\mathbf{1 1 h} \mathbf{- j}$ in which the C-2 and

Scheme 1^{a}

a (a) (i) $3 \mathrm{M} \mathrm{HCl}-\mathrm{AcOEt}$, (ii) EDCI, 14a-q, 46-82\% (2 steps).

C-3 positions of the 1,4-phenylene group are substituted by dimethoxy, methylenedioxy, or ethylenedioxy group(s) was comparable to that of 11a. Interestingly, 11k, carrying dimethoxy groups at the $\mathrm{C}-2$ and $\mathrm{C}-5$ positions of 1,4 -phenylene group, exhibited cytotoxicity 3500 times less than that of 11a. In contrast to the case of 11h, the additional methoxy group at the C-5 position of the phenylene ring debilitates cytotoxicity, probably due to its steric hindrance of the interaction in a minor groove of duplex DNA. Although the naphthalene analogues 11m,n turned out to be 3-4 times less cytotoxic than 11a, the anthracene analogues 110-q exhibited cytotoxicity about 1000 times less than that of 11a. From these results, it appeared that cytotoxicity of the bisalkylators depends highly not only on the length but also on the width of the linker. As for 11a, further cytotoxicity assays were also made against the human cancer cell lines SBC-3 (lung), SBC-3/ADR (lung, adriamycin-resistant), PC-3 (lung), KATO III (gastric), ZR-75-1 (breast), A2780 (ovarian), and DLD-1 (colon). As shown in Table 2, cytotoxicity of 11a was superior to that of adriamycin (ADR) in all human cancer cell lines tested and 11a showed different cytotoxic properties compared with those of adriamycin.
In Vivo Antitumor Activity. The seco MCTFCPI bisalkylators 11a-q were subjected to in vivo antitumor activity assay against Col on 26 murine adenocarcinoma cells. The results shown in Table 1 indicate that 11a
shows more potent antitumor activity than $\mathbf{8}$ and less toxicity than 9 in the murine Colon 26 model. Next, we further evaluated in vivo antitumor activity against human colon CX-1 tumor xenografts for 11a and 8. The results are shown in Table 3 and Figure 1. Compound 11a exhibits improved in vivo efficacy in the human colon CX-1 model when compared to either compound 8 or mitomycin C (MMC). Efficacious doses for 11a were found to be 2 -fold lower than those for 8.

Conclusion

As described above, we have succeeded in the design, synthesis, and evaluation of the novel seco MCTFCPI bisalkylators 11a-q carrying various $3,3^{\prime}$-arylenebisacryloyl groups. We found that the bisalkylator 11a, bearing a $3,3^{\prime}$-(1,4-phenylene)bisacryloyl group as a linker, exhibited more potent antitumor activity or less toxicity than did the other bisalkylators 11b-q in the Colon 26 model. Moreover, 11a, much like dinical trial candidate 8, shows more potent antitumor activity in the human colon CX-1 system xenografts model than the clinically widely used anticancer agent mitomycin C. Further investigation of the pharmacological profiles of 11a is in progress.

Experimental Section

All melting points were determined with a Y amato MP-500 melting point apparatus and are uncorrected. M easurements of optical rotations were carried out using a J ASCODIP-360

Scheme $\mathbf{2 a}^{\text {a }}$

${ }^{\text {a (a) (i) Ethyl acrylate, } \mathrm{Pd}(\mathrm{OAC})_{2}, ~ D P P P, ~} \mathrm{Et}_{3} \mathrm{~N}, 31 \%$, (ii) $\mathrm{KOH}, 91 \%$; (b) (i) $42 \% \mathrm{HBF}_{4}$, (ii) $\mathrm{NaNO}_{2}, 42 \% \mathrm{HBF}_{4}$; (c) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAc})_{2}, 29 \%$, (ii) $\mathrm{KOH}, 83 \%$; (d) (i) $\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Zn}, \mathrm{Et}_{4} \mathrm{NI}, 87 \%$, (ii) $47 \% \mathrm{HBr}, 84 \%$, (iii) $\mathrm{Tf}_{2} \mathrm{O}, 2,4,6$-collidine, 84%; (e) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAC})_{2}, ~ \mathrm{DPPP}, \mathrm{Et}_{3} \mathrm{~N}, 86 \%$, (ii) $\mathrm{KOH}, 89 \%$; (f) (i) $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$, (ii) $\mathrm{Tf}_{2} \mathrm{O}, 2,4,6$-collidine, 84% (for 23m), Tf $2 \mathrm{O}, \mathrm{DMAP}, 67 \%$ (for 23n); (g) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DPPP}, \mathrm{Et}_{3} \mathrm{~N}, 85 \%$ (for $\mathbf{1 6 m}$), 92% (for 16n), (ii) $\mathrm{KOH}, 96 \%$ (for $\mathbf{1 4 m}$), 93% (for $\mathbf{1 4 n}$); (h) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DPPP}, \mathrm{Et}_{3} \mathrm{~N}, 94 \%$ (for 160), (ii) $\mathrm{KOH}, 96 \%$; (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DPPP}^{2} \mathrm{Et}_{3} \mathrm{~N}$.
automatic digital polarimeter. Infrared (IR) spectra were recorded on a JASCO FT/IR-5300 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured with a J EOL J NM-EX-400 (400 MHz) spectrometer. The chemical shifts are expressed in parts per million (δ value) downfield from tetramethylsilane, using tetramethylsilane ($\delta=0$) and/or residual solvents such as chloroform ($\delta=7.26$) and benzene ($\delta=7.20$) as an internal standard. Splitting patterns are indicated as s, singlet; d, doublet; t , triplet; q, quartet; m, multiplet; br, broad peak. Measurements of mass spectra were performed with a Hitachi M-2000 mass spectrometer. Data for elemental analysis are within $\pm 0.3 \%$ of theoretical values and were determined by a Yanaco CHN corder MT-5. Unless otherwise noted, all the experiments were carried out using anhydrous solvents under an atmosphere of dry argon. Tetrahydrofuran and diethyl ether (ether) were distilled from sodium benzophenone ketyl. Throughout this work, Merck precoated thin layer chromatographic (TLC) plates (silica gel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$, Art 5715) were used for TLC analyses. Wako Gel C-200 and C-300 were used as an adsorbent for flash column chromatography. To minimize the health risks posed by these potent cytotoxic compounds to analytical service personnel of our Iaboratory and to allow preparation of only the very limited quantities needed for testing, infrared spectra and combustion elemental analyses were not obtained for the final analogues. ${ }^{4 c}$

Diethyl 3,3-(1,2-Phenylene)bisacrylate (16c). A mixture of 1,2-di bromobenzene ($500 \mathrm{mg}, 2.1 \mathrm{mmol}$), ethyl acrylate (4.6 $\mathrm{mL}, 42 \mathrm{mmol}$), triethylamine ($1.2 \mathrm{~mL}, 8.6 \mathrm{mmol}$), 1,3-(diphenylphosphino)propane ($87 \mathrm{mg}, 0.21 \mathrm{mmol}$), and palladium(II) acetate ($48 \mathrm{mg}, 0.21 \mathrm{mmol}$) in DMF (100 mL) was stirred at $100^{\circ} \mathrm{C}$ for 18 h . After concentration in vacuo, the residue was dissol ved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane sol ution was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the residue gave 16c as yellow crystals ($181 \mathrm{mg}, 31 \%$). Mp: 75$76{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.35(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.29(\mathrm{q}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=5.9 \mathrm{~Hz}$, $3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=5.9 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=$ $15.6 \mathrm{~Hz}, 2 \mathrm{H}$). IR (KBr): 1709, 1637, 1626, 1314, $1186 \mathrm{~cm}^{-1}$. MS (EI) m/z: $274\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(1,2-Phenylene)bisacrylic Acid (14c). A suspension of $\mathbf{1 6 c}(98 \mathrm{mg}, 0.36 \mathrm{mmol})$ and $\mathrm{KOH}(202 \mathrm{mg}, 3.6 \mathrm{mmol})$ in EtOH (2 mL) was heated at reflux for 2 h . After cooling, the mixture was adjusted to pH 1 by the addition of 1 N HCl solution. The resulting precipitates were collected by filtration, washed with water, and then dried in vacuo to give 14c as colorless crystals ($71 \mathrm{mg}, 91 \%$). Mp: $>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 6.44$ (d, J $=15.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (dd, $\mathrm{j}=5.9 \mathrm{~Hz}$, $3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, \mathrm{J}=5.9 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 2 \mathrm{H}$), 12.60 (br, 2H). IR (K Br): 2976, 2828, 1690, 1624,

Scheme 3^{a}

${ }^{\text {a (a) (i) }} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, (ii) $\mathrm{Tf}_{2} \mathrm{O}, 2,4,6$-collidine, 66%; (b) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{DPPP}^{2} \mathrm{Et}_{3} \mathrm{~N}, 90 \%$, (ii) $\mathrm{KOH}, 90 \%$; (c) (i) ethyl acrylate, $\mathrm{Pd}(\mathrm{OAC})_{2}, \mathrm{DPPP}, \mathrm{Et}_{3} \mathrm{~N}, 90 \%$, (ii) $\mathrm{KOH}, 90 \%$; (d) $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Mel}, 99 \%$ (for 31h), $\mathrm{BrCH}_{2} \mathrm{Cl}, 98 \%$ (for $\mathbf{3 1 i}$), $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{Br}, 99 \%$ (for $\mathbf{3 1 j}$); (e) $\mathrm{NaAlH}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)_{2}, \mathrm{~N}$-methylpiperazine, 80% (for $\mathbf{3 2 h}$), 66% (for $\mathbf{3 2 i}$), 68% (for 32j).

Scheme 4^{a}

 pyridine, piperidine, 91% (for 14b), 95% (for $\mathbf{1 4 f}$), 93% (for $\mathbf{1 4 g}$), 93% (for $\mathbf{1 4 h}$), 95% (for $\mathbf{1 4 i}$), 95% (for 14j), 61% (for 14k), $\mathbf{7 4 \%}$ (for 14I).
$1292 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}: 218\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Diethyl 3,3'-(1,1'-Diphenyl-4,4'-diyl)bisacrylate (16d). To a solution of $42 \% \mathrm{HBF}_{4}(12.5 \mathrm{~g}, 58 \mathrm{mmol})$ was added 17 ($2.15 \mathrm{~g}, 12 \mathrm{mmol}$) at room temperature, and the mixture was stirred at the same temperature for 2.5 h . After the addition of more $42 \% \mathrm{HBF}_{4}$ solution (10 mL), $\mathrm{NaNO}_{2}(1.64 \mathrm{~g}, 24 \mathrm{mmol})$ in water (4 mL) was added to the mixture at $0^{\circ} \mathrm{C}$, and the whole mixture was stirred at the same temperature for 1.5 h . $\mathrm{MeOH}(0.7 \mathrm{~mL})$, ethyl acrylate ($3.5 \mathrm{~mL}, 32 \mathrm{mmol}$), and Pd$(\mathrm{OAc})_{2}(49 \mathrm{mg}, 0.22 \mathrm{mmol})$ were added to the resulting solution. The mixture was stirred at $55-60^{\circ} \mathrm{C}$ for 1 h and then extracted with ether. The combined organic extracts were washed with saturated NaHCO_{3} solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:benzene $\left.=1: 1\right)$ of the residue gave 16d as col orless crystals ($1.17 \mathrm{~g}, 29 \%$). Mp: $147-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$): $\delta 1.35(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.28(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, $4 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.65$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{IR}(\mathrm{KBr}): 1705$, 1631, 1306, 1208, $1182 \mathrm{~cm}^{-1}$. MS (EI) m/z: $350\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(1,1'-Diphenyl-4,4'-diyl)bisacrylic Acid (14d). A suspension of 16d ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) and $\mathrm{KOH}(377 \mathrm{mg}, 6.7$ mmol) in EtOH (3 mL) was heated at reflux for 1 h . After concentration in vacuo, the resulting residue was dissolved in
water. The aqueous solution was adjusted to $\mathrm{pH} 2-3$ by the addition of 1 N HCl solution. The resulting precipitates were collected by filtration, washed with water, and then dried in vacuo to give 14d as colorless crystals ($140 \mathrm{mg}, 83 \%$). Mp: $>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.60(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.64(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~s}, 8 \mathrm{H}), 12.48$ (brs, 2H). IR (KBr): 2970, 1680, 1624, 1316, $1215 \mathrm{~cm}^{-1}$. MS (EI) m/z: 294 $\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5,5'-Dimethoxy-2,2-bipyridyl (21). To a suspension of zinc dust ($2.22 \mathrm{~g}, 34 \mathrm{mmol}$), bis(triphenylphosphine)nickel(II) bromide ($5.07 \mathrm{~g}, 6.8 \mathrm{mmol}$), and tetraethylammonium iodide ($5.82 \mathrm{~g}, 23 \mathrm{mmol}$) in THF (45 mL) was added a solution of $\mathbf{2 0}$ $(4.26 \mathrm{~g}, 23 \mathrm{mmol})$ in THF $(22 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 8 h , and then added to 2 M ammonia solution. The resulting solution was extracted with ether-benzene (1:1). The combined organic extracts were washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{AcOEt}=1: 1\right)$ of the residue gave $\mathbf{2 1}$ as colorless crystals ($2.14 \mathrm{~g}, 87 \%$). Mp: $130-133^{\circ} \mathrm{C}$ (cyclohexane). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.91(\mathrm{~s}, 6 \mathrm{H}), 7.30$ (dd, J $\left.=8.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.25$ ($\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $8.33(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{IR}(\mathrm{KBr}): 1562$, 1467, 1289, 1258, $1227 \mathrm{~cm}^{-1}$. MS (EI) m/z: 216 (M+). HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: calcd, 216.0899; found, 216.0903.

5,5'-Dihydroxy-2,2'-bipyridyl (22). A mixture of 21 (395 $\mathrm{mg}, 1.8 \mathrm{mmol}$) in acetic acid (7 mL) and $47 \% \mathrm{HBr}$ solution (7

Table 1. Cytotoxicity against HeLaS3 Human Uterine Cervix Carcinoma Cells and in Vivo Antitumor Activity against Colon 26 Murine Adenocarcinoma Cells of the MCTFCPI Bisalkylators Bearing 3,3'-Aryldiacryloyl Linkers

compd	$\begin{gathered} \mathrm{IC}_{50} \\ (\mathrm{ng} / \mathrm{mL})^{\mathrm{a}} \end{gathered}$	max; TGI \% $(\mu \mathrm{g} / \mathrm{kg})^{\mathrm{b}}$	body wt change (\%)	MTD $/$ / ${ }^{\text {G }}{ }_{50}$
11a	0.00274	89 (1.95)	-5	30.7
11b	54.6	91 (4000)	-5	nt
11c	87.6	70 (4000)	-6	nt
11d	0.141	83 (15.6)	4	3.7
11e	0.0198	88 (3.91)	4	3.6
11 f	> 100	nt	nt	nt
11g	48.3	84 (4000)	-11	nt
11h	0.00158	89 (0.977)	-1	4.6
11i	0.00595	90 (1.95)	-2	13.3
11j	0.00276	91 (0.488)	3	9.0
11k	9.71	81 (2000)	3	> 6.5
111	0.00318	nt	nt	nt
11m	0.011	85 (0.977)	3	7.4
11n	0.00934	nt	nt	nt
110	1.51	75 (4000)	-18	nt
11p	3.25	82 (15.6)	-6	3.5
11q	0.523	84 (15.6)	-4	6.6
8	0.060	90 (15.6)	-3	8.4
9	0.0049	84 (0.977)	1	3.3

${ }^{\text {a }}$ Drug concentration required to inhibit the growth of HeLaS3 human uterine cervix carcinoma cells by 50%. ${ }^{\text {b }}$ The percentage tumor growth inhibition as compared with the untreated group. ${ }^{\text {c }}$ Maximum dose within 10% body weight loss. nt, not tested.

Table 2. Cytotoxicity of 11a and Adriamycin against Human Cancer Cell Lines

	$\mathrm{IC}_{50}(\mathrm{ng} / \mathrm{mL})^{\mathrm{a}}$											
	SBC-3/								KATO			
compd	SBC-3	ADR	PC-3	III	ZR-75-1	A2780	DLD-1					
11a	0.00122	0.00349	0.148	0.816	0.00463	0.000397	0.0149					
ADR	11.2	129	275	905	6.39	12.1	136					

a Drug concentration required to inhibit the growth of HeLaS3 human uterine cervix carcinoma cells by 50%.

Table 3. Antitumor Activity of the Bisalkylators 8 and 11a Evaluated Using Athymic Mice on Which Human Colon CX-1 Tumor Xenografts Were Implanted

compd	dose $\left(\mu \mathrm{g} / \mathrm{kg}^{\mathrm{a}}\right.$	TGI \% ${ }^{\mathrm{b}}$
$\mathbf{1 1 a}$	3.91	77
	7.81	83
$\mathbf{8}$	7.81	53
	15.6	56
MMC	9180	65

a Tumor fragments of human colon CX-1 were implanted sc on day 0 . Drugs were administered iv on day 19. ${ }^{\mathrm{b}}$ The percentage tumor growth inhibition as compared with the untreated group.
mL) was heated at reflux for 37 h . After cooling, the resulting precipitates were collected by filtration and dried in air. The obtained crystals were dissolved in water, and the aqueous solution was adjusted to pH 7 by the addition of $10 \% \mathrm{NaOH}$ solution. The resulting precipitates were collected by filtration and dried in vacuo to give 22 as a pale yellow powder (290 $\mathrm{mg}, 84 \%$). Mp: 273-276 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.74$ (d, J $=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, 2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 11.28$ (brs, 2H). IR (KBr): 2992, 1480, $1292 \mathrm{~cm}^{-1}$. MS (EI) m/z: $188\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: calcd, 188.0586; found, 188.0587.

5,5'-B is[(trifluoromethanesulfonyl)oxy]-2,2'-bipyridyl (23e). Trifluoromethanesulfonic anhydride ($0.6 \mathrm{~mL}, 3.7$ mmol) was added to a suspension of 22 ($280 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $2,4,6$-colidine ($2.0 \mathrm{~mL}, 15 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . After adding more trifluoromethanesulfonic anhydride (0.6 $\mathrm{mL}, 3.7 \mathrm{mmol}$), the mixture was stirred at room temperature for 3 h and then diluted with ether. The resulting solution was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$,

Figure 1. In vivo antitumor activity against human colon CX-1 tumor xenografts.
filtered, and then concentrated in vacuo. Flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) of the residue gave $\mathbf{2 3 e}$ as col orless crystals (567 $\mathrm{mg}, 84 \%) . \mathrm{Mp}: 158-162^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.78$ (dd, J $=8.9 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=$ $2.4 \mathrm{~Hz}, 2 \mathrm{H}$). IR (KBr): 1468, 1422, 1408, 1376, 1254, 1216, 1162, $1139 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}: 452\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$ C, H, N.

Diethyl 3,3'-(2,2'-Bipyridyl-5,5'-diyl)bisacrylate (16e). A mixture of $23 \mathrm{e}(83.2 \mathrm{mg}, 0.18 \mathrm{mmol})$, ethyl acrylate (0.4 mL , 3.6 mmol), triethylamine ($0.1 \mathrm{~mL}, 0.72 \mathrm{mmol}$), 1,3-(diphenylphosphino)propane ($7.4 \mathrm{mg}, 18 \mu \mathrm{~mol}$), and palladium(II) acetate $(4.0 \mathrm{mg}, 18 \mu \mathrm{~mol})$ in DMF (14 mL) was stirred at 100 ${ }^{\circ} \mathrm{C}$ for 10 h . After concentration in vacuo, the residue was dissol ved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane solution was washed with water, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{AcOEt}\right.$ $=10: 1$) of the residue gave 16e as yellow crystals (54.3 mg , 86%). Mp: $173.5-175{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.36(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 6 \mathrm{H}), 4.30(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.73 (d, J $=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ (dd, J $=8.3 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.48(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.80(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H})$. IR (KBr): 1705, 1637, 1472, 1369, 1308, 1266, 1208, $1175 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}: 352\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(2,2-Bipyridyl-5,5'-diyl)bisacrylic Acid (14e). A suspension of $\mathbf{1 6 e}(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{KOH}(157 \mathrm{mg}, 2.8$ mmol) in EtOH (3 mL) was heated at reflux for 2 h and then concentrated in vacuo. The resulting residue was dissolved in water, and the pH of the aqueous solution was adjusted to 7 by the addition of 1 N HCl solution. The resulting preci pitates were collected by filtration, washed with water and ethanol, and then dried in vacuo to give 14e as colorless crystals (73.8 $\mathrm{mg}, 89 \%$). Mp: $>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.78$ (d, J $=$ $15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.35(\mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H})$. IR (KBr): 3435, 1692, 1593, 1547, $1468 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{FAB}^{+}\right)$ $\mathrm{m} / \mathrm{z}: 297\left(\mathrm{M}^{+}+1\right)$. HRMS $\left(\mathrm{FAB}^{+}\right)$for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{M}^{+}+1\right)$: calcd, 297.0875; found, 297.0875. Anal. ($\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$) C, H,N.

1,4-Bis[(trifluoromethanesulfonyl)oxy]naphthalene (23 m). A suspension of $\mathbf{2 4}(500 \mathrm{mg}, 3.2 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}$ $(50 \mathrm{mg})$ in THF (10 mL) was stirred at room temperature for 2 h under H_{2} atmosphere (1 atm). After being ventilated with Ar gas, 2,4,6-collidine ($3.3 \mathrm{~mL}, 25 \mathrm{mmol}$) and trifluoromethanesulfonic anhydride ($1.4 \mathrm{~mL}, 8.3 \mathrm{mmol}$) were added to the resulting mixture at $0{ }^{\circ} \mathrm{C}$, and the whole was stirred at room temperature for 18 h . After insoluble materials were filtered off, the filtrate was concentrated in vacuo, and the residue was dissolved in ether. The ethereal solution was washed with water, saturated CuSO_{4} solution, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography (Hex:AcOEt = 15:1) of the residue gave 23m
as a pale yellow solid ($1.11 \mathrm{~g}, 83 \%$). Mp: $35.5-37^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.51(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15$ (dd, J $=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$). IR (KBr): 1607, 1424, 1387, 1221 , $1142 \mathrm{~cm}^{-1}$. MS (EI) m/z: $424\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}$ $\left(\mathrm{M}^{+}\right)$: calcd, 423.9510; found, 423.9512. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)$ C, H, N

Diethyl 3,3'(1,4-Naphthalene)bisacrylate (16m). The compound $\mathbf{1 6 m}$ ($19.5 \mathbf{~ m g}, 85 \%$) was prepared from $\mathbf{2 3 m}$ (30.0 $\mathrm{mg}, 71 \mu \mathrm{~mol}$) in the same manner as described for 16e. Mp: $84-87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.38(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.33$ $(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{dd}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.76 (s, 2H) , 8.24 (dd, J $=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}$, $2 \mathrm{H}), 8.52$ (d, J $=15.6 \mathrm{~Hz}, 2 \mathrm{H})$. IR (KBr): 1705, 1638, 1628, 1616, 1393, 1371, 1312, $1259 \mathrm{~cm}^{-1}$. MS (EI) m/z: 324 (M^{+}). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(1,4-Naphthalene)bisacrylic Acid (14m). The compound $\mathbf{1 4 m}(90.2 \mathrm{mg}, 96 \%)$ was prepared from $\mathbf{1 6 m}$ (115 mg , 0.35 mmol) in a manner similar to that described for the preparation of $\mathbf{1 4 d}$. Mp: $>300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 6.66$ (d, J $=15.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 (dd, J $=6.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~s}$, $2 \mathrm{H}), 8.28$ (dd, J $=6.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.40(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}$, 2H), $12.66(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}(E I) \mathrm{m} / \mathrm{z}: 268\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: calcd, 268.0736; found, 268.0743. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1,4-Bis[(trifluoromethanesulfonyl)oxy]-5,8-dimethoxynaphthalene ($\mathbf{2 3 n}$). A suspensi on of $\mathbf{2 5}$ ($200 \mathrm{mg}, 0.92 \mathrm{mmol}$) and $10 \% \mathrm{Pd}-\mathrm{C}(20 \mathrm{mg})$ in THF (3 mL) was stirred at room temperature for 1 h under H_{2} atmosphere (1 atm). After insoluble materials were filtered off, the filtrate was concentrated in vacuo. To a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added 4-(dimethylamino)pyridine (DMAP; $450 \mathrm{mg}, 3.7$ mmol) and trifluoromethanesulfonic anhydride ($0.4 \mathrm{~mL}, 2.3$ mmol) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . The mixture was washed with water, 1 N HCl solution, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography (Hex: $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}=1: 1$) of the residue gave $\mathbf{2 3 n}$ as a col orless sol id (299 mg , 67%). Mp: $145.5-146.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.97$ (s, 6H), $7.00(\mathrm{~s}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 1609, 1431, 1421, 1379, 1272, 1248, 1217, $1202 \mathrm{~cm}^{-1}$. MS (EI) m/z: $484\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{8} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Diethyl 3,3'-(5,8-Dimethoxy-1,4-naphthalene)bisacrylate (16n). The compound 16n ($219 \mathrm{mg}, 92 \%$) was prepared from 23 n ($300 \mathrm{mg}, 0.62 \mathrm{mmol}$) in the same manner as described for $\mathbf{1 6 e} . \mathrm{Mp}$: $119-122^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.36$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 4.29(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.09$ $(\mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=$ $15.6 \mathrm{~Hz}, 2 \mathrm{H}$). IR (KBr): $1724,1710,1633,1457,1394 \mathrm{~cm}^{-1}$. MS (EI) m/z: $384\left(\mathrm{M}^{+}\right)$. Anal. ($\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$) C, H, N.

3,3'-(5,8-Dimethoxy-1,4-naphthalene)bisacrylic Acid (14n). The compound $\mathbf{1 4 n}(79.5 \mathrm{mg}, 93 \%)$ was prepared from $\mathbf{1 6 n}(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ similarly to the preparation of $\mathbf{1 4 d}$. Mp: 290-299.5 ${ }^{\circ} \mathrm{C}$ dec. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) $\delta 3.84(\mathrm{~s}, 6 \mathrm{H})$, 6.07 (d, J $=15.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.07 (s, 2H), 7.54 (s, 2H), 8.63 (d, J $=15.7 \mathrm{~Hz}, 2 \mathrm{H}$), $12.33(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{IR}(\mathrm{KBr}): 2959,2681,2587$, 1688, 1624, 1420, 1314, 1289, $1238 \mathrm{~cm}^{-1}$. MS (FAB^{-}) m/z: 327 ($\mathrm{M}^{+}-1$). HRMS (FAB^{-}) for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{6}\left(\mathrm{M}^{+}-1\right)$: calcd, 327.0869; found, 327.0934. Anal. ($\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N.

Diethyl 3,3-(9,10-Anthracenediyl)bisacrylate (160). The compound 160 ($314 \mathrm{mg}, 94 \%$) was prepared from 27 (300 mg , 0.89 mmol) in the same manner as described for 16e. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.42(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, $6.40(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ (dd, J $=6.8 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 4 \mathrm{H}$), 8.25 (dd, J $=6.8 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H})$. IR (KBr): 1713, 1281, $1046 \mathrm{~cm}^{-1}$. MS (EI) m/z: 374 (M+). HRMS (EI) for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: calcd, 374.1518 ; found, 374.1521 .

3,3'-(9,10-Anthracenediyl)bisacrylic Acid (140). The compound 140 ($161 \mathrm{mg}, 96 \%$) was prepared from $\mathbf{1 6 0}$ (200 mg , 0.53 mmol) in a manner similar to that described for the preparation of $\mathbf{1 4 d}$. Mp: $>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 6.32$ $(\mathrm{d}, \mathrm{J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=6.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 4 \mathrm{H}), 8.22$ (dd, J $=6.8 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 4 \mathrm{H}$), $8.48(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 4 \mathrm{H}), 12.87$ (s, 2H). IR (KBr): 1694, 1630, 1424, 1308, 1260, $1200 \mathrm{~cm}^{-1}$.

MS (EI) m/z: $318\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: calcd, 318.0892; found, 318.0915. Anal. ($\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}$) C, H, N.

1,4-Bis[(trifluoromethanesulfonyl)oxy]anthracene (23p). The compound 23p ($526 \mathrm{mg}, 23 \%$) was prepared from 29 ($1.00 \mathrm{~g}, 4.8 \mathrm{mmol}$), using 10% Pd-C (50 mg), 2,4,6-colidine $(5.0 \mathrm{~mL}, 38 \mathrm{mmol})$, and trifluoromethanesulfonic anhydride ($2.0 \mathrm{~mL}, 12 \mathrm{mmol}$), in the same manner as described for $\mathbf{2 3 m}$. Mp: $152.5-153.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.47(\mathrm{~s}, 2 \mathrm{H}), 7.67$ (dd, J $=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.14 (dd, J $=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.71 (s, 2H). IR (KBr): 1423, 1213, $1139 \mathrm{~cm}^{-1}$. MS (EI) m/z: $474\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Diethyl 3,3-(1,4-Anthracenediyl)bisacrylate (16p). The compound 16p ($71.0 \mathrm{mg}, 90 \%$) was prepared from 23p (100 $\mathrm{mg}, 0.21 \mathrm{mmol}$) in the same manner as described for $\mathbf{1 6 e} . \mathrm{Mp}$: $98.5-99.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 6 \mathrm{H})$, $4.37(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{dd}$, $\mathrm{J}=6.3 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{dd}, \mathrm{J}=6.3 \mathrm{~Hz}, 3.4$ $\mathrm{Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.78(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 1706 , 1629, 1255, $1178 \mathrm{~cm}^{-1}$. MS (EI) m/z: 374 (M+). Anal. ($\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}$) C, H, N.

3,3-(1,4-Anthracenediyl)bisacrylic Acid (14p). The compound $\mathbf{1 4 p}$ ($152 \mathrm{mg}, 90 \%$) was prepared from $\mathbf{1 6 p}(200 \mathrm{mg}$, 0.53 mmol) similarly to the preparation of $\mathbf{1 4 d} . \mathrm{Mp}:>300^{\circ} \mathrm{C}$. ${ }^{1}$ H NMR (DMSO-d ${ }_{6}$): $\delta 6.74$ (d, J = $15.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.60 (dd, J $=5.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 2 \mathrm{H}), 8.28(\mathrm{dd}, \mathrm{J}=5.9 \mathrm{~Hz}, 2.9$ $\mathrm{Hz}, 2 \mathrm{H}), 8.58(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.96(\mathrm{~s}, 2 \mathrm{H}), 12.71(\mathrm{br}, 2 \mathrm{H})$. IR (KBr): 1684, 1621, 1419, 1286, 1259, $1210 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}: 318\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: calcd, 318.0892; found, 318.0894. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{O}_{4} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Diethyl 3,3'-(1,4-Anthraquinoyl)bisacrylate (16q). The compound $\mathbf{1 6 q}(49.0 \mathrm{mg}, 60 \%$) was prepared from $\mathbf{2 3 q}$ (100 $\mathrm{mg}, 0.20 \mathrm{mmol}$) in the same manner as described for $\mathbf{1 6 e} . \mathrm{Mp}$: $222.5-224.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.39(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H})$, $4.34(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.28(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}$, 2 H), 7.81 (dd, J $=5.9 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.24 (dd, J $=5.9 \mathrm{~Hz}$, $3.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.58 (d, J = $15.6 \mathrm{~Hz}, 2 \mathrm{H}$). IR (KBr): 1700,1661 , 1631, 1592, 1331, $1281 \mathrm{~cm}^{-1}$. MS (EI) m/z: 404 (M+). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3,3'-(1,4-Anthraquinoyl)bisacrylic Acid (14q). The compound $\mathbf{1 4 q}(215 \mathrm{mg}, 100 \%)$ was prepared from $\mathbf{1 6 q}(250 \mathrm{mg}$, 0.62 mmol) in a manner similar to that described for the preparation of $\mathbf{1 4 d}$. Mp: $>300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.40$ $(\mathrm{d}, \mathrm{J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{dd}, \mathrm{J}=5.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~s}$, 2 H), 8.13 (dd, J $=5.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.41(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}$, 2H), 12.61 (br, 2H). IR (KBr): 1694, 1667, 1629, 1589, 1419, 1326, $1278 \mathrm{~cm}^{-1}$. MS (EI) m/z: $258\left(\mathrm{M}^{+}-2 \mathrm{CO}_{2} \mathrm{H}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3,3'-(1,3-Phenylene)bisacrylic Acid (14b). A suspension of 1,3 -benzenedicarboxal dehyde ($500 \mathrm{mg}, 3.7 \mathrm{mmol}$), malonic acid ($1.72 \mathrm{~g}, 16.5 \mathrm{mmol}$), and pyridine-piperidine ($70: 1 \mathrm{v} / \mathrm{v}, 7$ mL) was heated at reflux for 24 h . After cooling, the mixture was adjusted to pH 1 by the addition of 1 N HCl solution. The resulting precipitates were collected by filtration, washed with water, and then dried in vacuo to give $\mathbf{1 4 b}$ as col orless crystals ($741 \mathrm{mg}, 91 \%$). Mp: $287-290^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 6.67$ $(\mathrm{d}, \mathrm{J}=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=16.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 12.46(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 3005, 1680, 1631, 1440, $1302 \mathrm{~cm}^{-1}$. MS (EI) m/z: $218\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-[3,3"-(1,1':4', $\mathbf{1}^{\prime \prime}-$ Terphenyl)]bisacrylic Acid (14f). The compound $14 f(1.06 \mathrm{~g}, 95 \%)$ was prepared from [3,3"-($1, \mathrm{l}^{\prime}$: $4^{\prime}, 1^{\prime \prime}$-terphenyl)]di carboxaldehyde (32f) ($80 \mathrm{mg}, 0.28 \mathrm{mmol}$) in the same manner as described for 14b. Mp: > $300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d $)_{6}$: $\delta 6.70(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, 2H), 7.69-7.81 (m, 6H), 7.88 (s, 4H), 8.01 (s, 2H), 12.43 (br, $2 \mathrm{H})$. MS (FAB^{-}) m/z: 369 ($\mathrm{M}^{+}-1$). HRMS (FAB^{-}) for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}$ ($M^{+}-1$): calcd, 369.1127; found, 369.1214. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
3,3'-[4,4"-(1,1':4', $\mathbf{1}^{\prime \prime}$-Terphenyl)]bisacrylic Acid (14g). The compound $\mathbf{1 4 g}$ ($96.4 \mathrm{mg}, 93 \%$) was prepared from [4,4"(1,1':4', 1"-terphenyl)]dicarboxaldehyde (32g) (80 mg, 0.28 mmol) in the same manner as described for 14b. Mp: >300 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 6.60(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (d , $\mathrm{J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 8 \mathrm{H}), 7.85(\mathrm{~s}, 4 \mathrm{H}), 12.43(\mathrm{br}, 2 \mathrm{H}) . \mathrm{IR}$
(KBr): 1676, 1624, 1601, 1429, 1312, 1280, $1214 \mathrm{~cm}^{-1}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Dimethyl 2,3-Dimethoxyterephthalate (31h). A suspension of $30(5.00 \mathrm{~g}, 22 \mathrm{mmol})$ and cesium carbonate ($17.3 \mathrm{~g}, 53$ mmol) in DMF (50 mL) was stirred at room temperature for 0.5 h . Methyl iodide ($3.3 \mathrm{~mL}, 53 \mathrm{mmol}$) was added to the resulting mixture, and the whole was stirred at room temperature for 2 h . After concentration in vacuo, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane solution was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo to give 31h as a pale brown oil ($5.55 \mathrm{~g}, 99 \%$). ${ }^{1 \mathrm{H}}$ NMR (CDCl_{3}): $\delta 3.93$ (s, 6H), 3.95 (s, 6H), 7.50 (s, 2H). IR (Neat): 1734, $1290 \mathrm{~cm}^{-1}$. MS (EI) m/z: 254 $\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: calcd, 254.0790; found, 254.0776.

2,3-Dimethoxyterephthalaldehyde (32h). A solution of N -methylpiperazine ($5.20 \mathrm{~g}, 52 \mathrm{mmol}$) in toluene (16 mL) was added to a solution of sodium bis(methoxyethoxy)aluminum hydride ($13.6 \mathrm{~g}, 47 \mathrm{mmol}, 70 \%$ toluene solution) at $0^{\circ} \mathrm{C}$ for 0.5 h . The obtained toluene solution was added to a solution of 31h ($3.00 \mathrm{~g}, 12 \mathrm{mmol}$) in toluene (120 mL) at $-20^{\circ} \mathrm{C}$ over 50 min , and the mixture was stirred at the same temperature for 10 min . After the reaction was quenched by adding water $(20 \mathrm{~mL})$, the insoluble materials formed were filtered off. The filtrate was washed with 1 N HCl solution, water, and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ of the residue gave 32h as colorless crystals ($1.84 \mathrm{~g}, 80 \%$). Mp: $99.5-100.5^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.06(\mathrm{~s}, 6 \mathrm{H}), 7.64(\mathrm{~s}, 2 \mathrm{H}), 10.45(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 1688, 1570, 1464, 1420, 1395, 1385, $1250 \mathrm{~cm}^{-1}$. MS (EI) m/z: 194 (M+). Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(2,3-Dimethoxy-1,4-phenylene)bisacrylic Acid (14h). The compound 14h ($1.34 \mathrm{~g}, 93 \%$) was prepared from $\mathbf{3 2 h}$ (1.00 $\mathrm{g}, 5.2 \mathrm{mmol}$) in the same manner as described for 14b. Mp: $>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 3.84$ ($\mathrm{s}, 6 \mathrm{H}$), 6.62 ($\mathrm{d}, \mathrm{J}=$ $16.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (s, 2H), 7.76 (d, J $=16.6 \mathrm{~Hz}, 2 \mathrm{H}$), 12.53 (s, 2H).IR (KBr): 1686, 1629, 1460, 1413, 1308, 1282, 1263, 1223 cm^{-1}. MS (EI) m/z: $278\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: cal cd, 278.0790; found, 278.0781. Anal. ($\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{6}$) C, H, N.

Dimethyl 2,3-(Methylenedioxy)terephthalate (31i). A suspension of $\mathbf{3 0}(5.00 \mathrm{~g}, 22 \mathrm{mmol})$ and cesium carbonate (17.3 $\mathrm{g}, 53 \mathrm{mmol})$ in DMF (50 mL) was stirred at room temperature for 0.5 h . Bromochloromethane ($3.5 \mathrm{~mL}, 53 \mathrm{mmol}$) was added to the DMF sol ution, and the mixture was stirred at $50^{\circ} \mathrm{C}$ for 10 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane solution was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo to give 31 i as a colorless solid ($5.14 \mathrm{~g}, 98 \%$). Mp: 208-210 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 3.94(\mathrm{~s}, 6 \mathrm{H}), 6.25(\mathrm{~s}, 2 \mathrm{H}), 7.43(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 1723, 1439, $1298 \mathrm{~cm}^{-1}$. MS (EI) m/z: $238\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: calcd, 238.0477; found, 238.0494.

2,3-(Methylenedioxy)terephthaladehyde (32i). The compound 32 i ($1.52 \mathrm{~g}, 68 \%$) was prepared from 31i ($3.00 \mathrm{~g}, 13$ mmol) in a manner similar to that described for the preparation of 32h. Mp: $151.5-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.34(\mathrm{~s}$, 2H), 7.39 (s, 2H), 10.21 (s, 2H). IR (KBr): 1696, 1472, 1454, 1400, 1364, 1254, $1219 \mathrm{~cm}^{-1}$. MS (EI) m/z: $178\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(2,3-Methylenedioxy-1,4-phenylene)bisacrylic Acid (14i). The compound $\mathbf{1 4 i}(1.39 \mathrm{~g}, 95 \%)$ was prepared from 31i $(1.00 \mathrm{~g}, 5.6 \mathrm{mmol})$ in a manner similar to that described for the preparation of $\mathbf{1 4 b} . \mathrm{Mp}:>300^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$): δ $6.29(\mathrm{~s}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}$ $=16.6 \mathrm{~Hz}, 2 \mathrm{H}$), $12.53(\mathrm{~s}, 2 \mathrm{H}) . \mid \mathrm{R} \mathrm{(} \mathrm{KBr}$): 1689, 1617, 1437, 1320, 1267, $1233 \mathrm{~cm}^{-1}$. MS (EI) m/z: 262 (M+). HRMS (EI) for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: calcd, 262.0477; found, 262.0462. Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Dimethyl 2,3-(Ethylenedioxy)terephthalate (31j). A suspension of $\mathbf{3 0}(5.00 \mathrm{~g}, 22 \mathrm{mmol})$ and cesium carbonate (17.3 $\mathrm{g}, 53 \mathrm{mmol})$ in DMF (50 mL) was stirred at room temperature for $0.5 \mathrm{~h} .1,2$-Dibromoethane ($2.5 \mathrm{~mL}, 29 \mathrm{mmol}$) was added to the DMF solution, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dichloromethane solution was washed with water and brine, dried over anhydrous
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo to give 31j as a colorless solid ($5.54 \mathrm{~g}, 98 \%$). Mp: $107.5-110^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.90(\mathrm{~s}, 6 \mathrm{H}), 4.41(\mathrm{~s}, 4 \mathrm{H}), 7.35(\mathrm{~s}, 2 \mathrm{H})$. IR (KBr): 1730, 1442, 1278, $1238 \mathrm{~cm}^{-1}$. MS (EI) m/z: 252 (M+ ${ }^{+}$. HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$: calcd, 252.0634; found, 252.0641.

2,3-(Ethylenedioxy)terephthaladehyde (32j). The compound 32 j ($1.01 \mathrm{~g}, 66 \%$) was prepared from 31j ($2.00 \mathrm{~g}, 7.9$ mmol) in a manner similar to that described for the preparation of 32h. Mp: $139-140.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.48(\mathrm{~s}$, $4 \mathrm{H}), 7.44$ (s, 2H), 10.43 (s, 2H). IR (KBr): 1688, 1578, 1466, 1451, 1404, 1379, 1280, 1256, $1240 \mathrm{~cm}^{-1}$. MS (EI) m/z: 192 $\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(2,3-Ethylenedioxy-1,4-phenylene)bisacrylic Acid (14j). The compound 14j ($1.39 \mathrm{~g}, 95 \%$) was prepared from 32j ($1.01 \mathrm{~g}, 5.3 \mathrm{mmol}$) in the same manner as that described for 14b. Mp: > $300^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 4.40(\mathrm{~s}, 4 \mathrm{H}), 6.57$ $(\mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H})$, 12.43 (s, 2H). IR (KBr): 1687, 1618, 1442, 1419, 1322, 1286, $1229 \mathrm{~cm}^{-1}$. MS (EI) m/z: $276\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}$ $\left(\mathrm{M}^{+}\right)$: calcd, 276.0634; found, 276.0634. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{6}\right) \mathrm{C}$, H, N.

2,2-(2,3-Dimethoxy-1,4-phenylene)bis(4,4-dimethyl-2oxazoline) (34). (a) Preparation of $\mathrm{N}, \mathrm{N}^{\prime}$-bis(2-hydroxy-1,1-dimethylethyl)-2,3-dimethoxyterephthalamide: Tоа solution of 2-amino-2-methyl-1-propanol ($6.06 \mathrm{~g}, 68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added a solution of $33(4.47 \mathrm{~g}, 17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $5-10{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h . After insoluble materials were filtered off, the filtrate was kept standing at room temperature. The precipitates formed were collected by filtration and dried in vacuo to give N,N'-bis(2-hydroxy-1,1-dimethylethyl)-2,3dimethoxyterephthalamide as col orless crystals ($6.27 \mathrm{~g}, 100 \%$). Mp: $151-153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.43(\mathrm{~s}, 12 \mathrm{H}), 3.71(\mathrm{~s}$, $4 \mathrm{H}), 3.96$ (s, 6H), 4.55 (brs, 2H), 7.89 (s, 2H), 8.06 (brs, 2H). IR (KBr): 1651, 1631, 1546, 1453, 1402, 1311, 1274, $1246 \mathrm{~cm}^{-1}$. MS (EI) m/z: 368 (M ${ }^{+}$). Anal. ($\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$) C, H, N.
(b) Preparation of 2,2-(2,3-dimethoxy-1,4-phenylene)-bis(4,4-dimethyl-2-oxazoline) (34): A mixture of $\mathrm{N}, \mathrm{N}^{\prime}$-bis-(2-hydroxy-1,1-dimethyl ethyl)-2,3-di methoxyterephthalamide $(6.00 \mathrm{~g}, 16 \mathrm{mmol})$ and thionyl chl oride (7 mL) was stirred at room temperature for 3 h . After an additional thionyl chloride (7 mL) was added, the mixture was stirred at room temperature for 1 h . After the addition of ether (50 mL), the supernatant was removed by decantation. The lower residue was dissolved in water (50 mL), and the aqueous solution was adjusted to pH 8 by the addition of $10 \% \mathrm{NaOH}$ solution. The aqueous solution was extracted with ether, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo. Flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOH}=20: 1\right)$ of the residue gave 34 as colorless crystals ($2.52 \mathrm{~g}, 47 \%$). M p: 84.5-85.5 ${ }^{\circ} \mathrm{C}$. ${ }^{1 \mathrm{H}}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40(\mathrm{~s}, 12 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H}), 4.11(\mathrm{~s}, 4 \mathrm{H}), 7.50(\mathrm{~s}$, 2H). IR (KBr): 1643, 1489, 1460, 1401, 1349, 1307, 1237, 1189 cm^{-1}. MS (EI) m/z: $332\left(\mathrm{M}^{+}\right)$. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,2'(2,3-Diethyl-1,4-phenylene)bis(4,4-dimethyl-2-oxazoline) (35). Ethylmagnesium bromide ($16.4 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added to a solution of $34(2.00 \mathrm{~g}, 6.0$ mmol) in THF (20 mL) at $0^{\circ} \mathrm{C}$ over 0.5 h , and the mixture was stirred at room temperature for 2 h . After the reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and water, the mixture was extracted with ether. The combined ethereal extracts washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo gave 35 as pale yellow crystals ($1.98 \mathrm{~g}, 100 \%$). Mp: $49-50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.16(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 2.98(\mathrm{q}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 4 \mathrm{H}$), 4.08 (s, 4H), 7.44 (s, 2H). IR (KBr): 2967, 2932, 1653, 1460, 1346, 1287, 1188, 1132, $1049 \mathrm{~cm}^{-1}$. MS (EI) m/z: $328\left(\mathrm{M}^{+}\right)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,3-Diethylterephthalaldehyde (321). (a) Preparation of 2,2-(2,3-diethyl-1,4-phenylene)bis(4,4-dimethyl-2-oxazolinium iodide): A mixture of 35 ($1.86 \mathrm{~g}, 5.7 \mathrm{mmol}$) and methyl iodide (7 mL) in nitromethane (5 mL) was stirred at $80{ }^{\circ} \mathrm{C}$ for 4 h . After dilution with ether, the resulting preci pitates were collected by filtration and dried in vacuo to give 2,2'-(2,3-diethyl-1,4-phenylene)bis(4,4-dimethyl-2-oxazo-
linium iodide) as colorless crystals ($2.62 \mathrm{~g}, 76 \%$). Mp: 281$285{ }^{\circ} \mathrm{C}(\mathrm{EtOH}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 1.15(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, $6 \mathrm{H}), 1.66(\mathrm{~s}, 12 \mathrm{H}), 2.70(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.24(\mathrm{~s}, 6 \mathrm{H}), 5.09$ (s, 4H), 8.00 (s, 2H). IR (KBr): 3441, 2969, 2936, 2882, 1730, 1657, 1495, 1427, $1416 \mathrm{~cm}^{-1}$. MS (EI) m/z: 358 ($\mathrm{M}^{+}-2 \mathrm{I}$). Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{I}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(b) Preparation of 2,3-diethylterephthalaldehyde (321): To a suspension of 2,2'-(2,3-diethyl-1,4-phenylene)bis-(4,4-dimethyl-2-oxazolinium iodide) ($2.45 \mathrm{~g}, 5.1 \mathrm{mmol}$) in EtOH (50 mL) was added sodium borohydride ($0.77 \mathrm{~g}, 20 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$ for 1 h , and the mixture was stirred at $5{ }^{\circ} \mathrm{C}$ for 3 h . After the reaction was quenched by the addition of 2 N HCl solution, the mixture was extracted with ether. The ethereal organic extracts were washed with brine. After treatment with activated carbon, the organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and then concentrated in vacuo to give 32l as a pale yellow oil (102 mg, 13\%). Mp: 32-34.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.14(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H})$, 7.84 (s, 2H), 10.41 (s, 2H). IR (KBr): 3443, 2973, 2932, 1690, 1458, 1393, $1229 \mathrm{~cm}^{-1}$. MS (EI) m/z: $190\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: calcd, 190.0994; found, 190.0990. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3,3'-(2,3-Diethyl-1,4-phenylene)bisacrylic Acid (141). The compound 141 (62.6 mg , 74\%) was prepared from 311 (59.8 $\mathbf{m g}, 0.31 \mathrm{mmol}$) in the same manner as that described for $\mathbf{1 4 b}$. Mp: 264-268 ${ }^{\circ} \mathrm{C}$ dec. ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 1.11$ (t, J $=7.8$ $\mathrm{Hz}, 6 \mathrm{H}), 2.77(\mathrm{q}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.57 (s, 2H), $7.88(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 2 \mathrm{H}), 12.50(\mathrm{br}, 2 \mathrm{H})$. IR (KBr): 3432, 2971, 1688, 1628, 1416, $1287 \mathrm{~cm}^{-1}$. MS (EI) m/z: $274\left(\mathrm{M}^{+}\right)$. HRMS (EI) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: calcd, 274.1205; found, 274.1160. Anal. $\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(S,S)-Dimethyl 6,6'[3,3'(1,4-Phenylene)diacryloyl]bis-[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tet-rahydropyrrolo[3,2-e]indole-3-carboxylate] (11a). A soIution of 12 ($13.5 \mathrm{mg}, 30 \mu \mathrm{~mol}$) in $3 \mathrm{M} \mathrm{HCl}-\mathrm{AcOEt}(0.6 \mathrm{~mL})$ was stirred at room temperature for 1 h . Concentration of the mixture in vacuo gave the crude hydrochloride 13 as a pale yellow powder, which was directly added to a solution of 14a ($3.3 \mathrm{mg}, 15 \mu \mathrm{~mol}$) and EDCI ($17.3 \mathrm{mg}, 90 \mu \mathrm{~mol}$) in DMF (0.3 mL). The mixture was stirred at room temperature overnight. After dilution with water, the mixture was extracted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (5:1), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, then concentrated in vacuo. Flash chromatography $\left(\mathrm{CHCl}_{3}\right.$: MeOH :acetone $=5: 1: 1$) of the residue gave 11a as pale yellow crystals ($3.3 \mathrm{mg}, 25 \%$). $[\alpha]_{\mathrm{D}}{ }^{24}=-21^{\circ}\left(\mathrm{c}=0.20\right.$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.48(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, 2H), 3.88 (s, 6H), 4.28 (br, 2H), 4.40-4.49 (m, 4H), 7.30 (d, J $=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 4 \mathrm{H}), 8.11$ (brs, 2H), 10.52 (br, 2H), 13.02 (br, 2H). MS (FAB+ $) \mathrm{m} / \mathrm{z}: 879$ $\left(\mathrm{M}^{+}+1\right)$. HRMS $\left(\mathrm{FAB}^{+}\right)$for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 879.1423; found, 879.1442.

The other seco MCTFCPI bisalkylators 11b-q were prepared in a manner similar to that described for the preparation of 11a.
(S,S)-Dimethyl 6,6'[3,3'(1,3-Phenylene)diacryloyl]bis-[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tet-rahydropyrrolo[3,2-e]indole-3-carboxylate] (11b). The compound 11b ($3.5 \mathrm{mg}, 27 \%$) was prepared from 12 (13.5 mg , $30 \mu \mathrm{~mol})$ and 14b ($3.3 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{27}=-28^{\circ}(\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 3.51$ (dd, J $=10 \mathrm{~Hz}, 9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.75-3.93 (m, 2H), 3.88 (s, 6H), 4.24-4.33 (m, 2H), 4.38-4.53 $(\mathrm{m}, 4 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ $(d, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 2 \mathrm{H}), 8.25$ (s, 1H), $10.56(\mathrm{~s}, 2 \mathrm{H}), 13.06(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 879\left(\mathrm{M}^{+}\right.$ $+1)$. HRMS $\left(\mathrm{FAB}^{+}\right)$for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 879.1423; found, 879.1410.
(S,S)-Dimethyl 6,6'-[3,3'-(1,2-Phenylene)diacryloyl]bis-[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tet-rahydropyrrolo[3,2-e]indole-3-carboxylate] (11c). The compound 11c ($3.9 \mathrm{mg}, 29 \%$) was prepared from 12 ($13.5 \mathrm{mg}, 30$ $\mu \mathrm{mol})$ and 14c (3.3 mg, $15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{28}=-107^{\circ}(\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.51(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-$ $3.92(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 4.22-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.50(\mathrm{~m}$, $4 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 4 \mathrm{~Hz}, 2 \mathrm{H})$,
7.97 (m, 2H), $8.05(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 10.57(\mathrm{~s}$, $2 H), 13.06(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 879\left(\mathrm{M}^{+}+1\right) . \mathrm{HRMS}$ (FAB^{+}) for $\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 879.1423; found, 879.1401.
(S,S)-Dimethyl 6,6'-[3,3'-(1,1'-Diphenyl-4,4'-diyl)di-acryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate](11d). The compound 11d ($1.7 \mathrm{mg}, 12 \%$) was prepared from 12 (13.5 $\mathrm{mg}, 30 \mu \mathrm{~mol}$) and 14d (4.4 mg, $15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{32}=-36^{\circ}(\mathrm{c}=$ 0.05, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.50$ (dd, J $=11 \mathrm{~Hz}, 9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.78-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.23-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.38-$ $4.52(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H})$, $7.84(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H})$, $10.56(\mathrm{~s}, 2 \mathrm{H}), 13.07(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 955\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{46} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 955.1736; found, 955.1703.
(S,S)-Dimethyl 6,6'-[3,3'-(2,2'-Bipyridyl-5,5'-diyl)di-acryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11e). The compound 11e ($2.4 \mathrm{mg}, 16 \%$) was prepared from 12 (13.5 $\mathrm{mg}, 30 \mu \mathrm{~mol})$ and $14 \mathrm{e}(4.4 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]_{D}{ }^{32}=-35^{\circ}(\mathrm{c}=$ 0.05, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 3.51$ (dd, J $=10 \mathrm{~Hz}, 9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.77-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.25-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.39-$ $4.55(\mathrm{~m}, 4 \mathrm{H}), 7.47(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H})$, 8.13 (s, 2H), $8.51(\mathrm{~s}, 4 \mathrm{H}), 9.08(\mathrm{~s}, 2 \mathrm{H}), 10.60(\mathrm{~s}, 2 \mathrm{H}), 13.09(\mathrm{~s}$, 2H). MS (FAB+ $\mathrm{m} / \mathrm{z}: 957$ ($\mathrm{M}^{+}+1$). HRMS (FAB+$)$ for $\mathrm{C}_{44} \mathrm{H}_{33^{-}}$ $\mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 957.1641; found, 957.1594.
(S,S)-Dimethyl 6,6'[3,3'-(3,3'-(1,1: $\mathbf{4}^{\prime}, \mathbf{1}^{\prime \prime}$-Terphenyl))di-acryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11f). The compound 11 f ($3.1 \mathrm{mg}, 10 \%$) was prepared from 12 (27.0 $\mathrm{mg}, 60 \mu \mathrm{~mol})$ and $14 \mathrm{f}(11.2 \mathrm{mg}, 30 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{28}=-19^{\circ}(\mathrm{c}=$ 0.05, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.51$ (dd, J $=10 \mathrm{~Hz}, 9 \mathrm{~Hz}$, 2 H), 3.78-3.94 (m, 2H), $3.88(\mathrm{~m}, 6 \mathrm{H}), 4.24-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.39-$ $4.54(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.92(\mathrm{~s}, 4 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H}), 10.56(\mathrm{~s}, 2 \mathrm{H})$, 13.07 (s, 2H). MS (FAB ${ }^{+}$) m/z: $1031\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{52} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 1031.2049; found, 1031.2085.
(S,S)-Dimethyl 6,6'-[3,3'-(4,4'-(1,1 $\mathbf{1}^{\prime}: 4^{\prime}, 1^{\prime \prime}$-Terphenyl))di-acryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11g). The compound $\mathbf{1 1 g}$ ($4.9 \mathrm{mg}, 31 \%$) was prepared from 12 (13.5 $\mathrm{mg}, 30 \mu \mathrm{~mol})$ and $\mathbf{1 4 g}(5.6 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{28}=-17^{\circ}(\mathrm{c}=$ 0.05, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.50$ ($\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79-3.93 (m, 2H), $3.88(\mathrm{~s}, 6 \mathrm{H}), 4.23-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.53$ (m, 4H), $7.29(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}) .7 .72(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.83$ $(\mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 7.88(\mathrm{~s}, 4 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 8.13(\mathrm{~s}$, 2 H), $10.56(\mathrm{~s}, 2 \mathrm{H}), 13.06(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 1031\left(\mathrm{M}^{+}+\right.$ 1). HRMS (FAB^{+}) for $\mathrm{C}_{52} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 1031.2049; found, 1031.1991.
(S,S)-Dimethyl 6,6'-[3,3-(2,3-Dimethoxy-1,4-phenylene)-diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoro-methyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11h). The compound 11h ($1.1 \mathrm{mg}, 8 \%$) was prepared from $12(13.5 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and $14 \mathrm{~h}(4.2 \mathrm{mg}, 15 \mu \mathrm{~mol})$. $[\alpha]_{\mathrm{D}}{ }^{32}$ $=-26^{\circ}(\mathrm{c}=0.05, \mathrm{THF}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 3.51$ (dd, J $=$ $10 \mathrm{~Hz}, 9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79-3.94 (m, 2H), 3.88 (s, 6H), $3.90(\mathrm{~s}, 6 \mathrm{H}$), $4.24-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.49(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H})$, $7.78(\mathrm{~s}, 2 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 10.57(\mathrm{~s}$, $2 \mathrm{H}), 13.08$ (s, 2H). MS (FAB^{+}) m/z: $939\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}+1\right.$): calcd, 939.1634; found, 939.1617.
(S,S)-Dimethyl 6,6'[3,3'-(2,3-(Methylenedioxy)-1,4-phen-ylene)diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluo-romethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11i). The compound 11 il ($2.4 \mathrm{mg}, 17 \%$) was prepared from $12(13.5 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and $\mathbf{1 4 i}(3.9 \mathrm{mg}, 15 \mu \mathrm{~mol})$. $[\alpha]_{\mathrm{D}}{ }^{30}=-12^{\circ}\left(\mathrm{c}=0.05\right.$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 3.52$ (dd, J $=11 \mathrm{~Hz}, 9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78-3.85 (m, 2H), $3.88(\mathrm{~s}, 6 \mathrm{H})$, 4.24-4.32 (m, 2H), 4.32-4.45 (m, 4H), $6.38(\mathrm{~s}, 2 \mathrm{H}), 7.28$ (d, J $=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}$, $2 \mathrm{H}), 10.58(\mathrm{~s}, 2 \mathrm{H}), 13.17(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 923\left(\mathrm{M}^{+}+\right.$
1). HRMS (FAB^{+}) for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}+1\right)$: calcd, 923.1321; found, 923.1298.
(S,S)-Dimethyl 6,6'[3,3'(2,3-(Ethylenedioxy)-1,4-phen-ylene)diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluo-romethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11j). The compound 11 j ($4.1 \mathrm{mg}, 15 \%$) was prepared from $12(26.9 \mathrm{mg}, 60 \mu \mathrm{~mol})$ and $\mathbf{1 4 j}(8.3 \mathrm{mg}, 30 \mu \mathrm{~mol})$. $[\alpha]_{\mathrm{D}}{ }^{30}=-12^{\circ}(\mathrm{c}=0.05$, THF $) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.51(\mathrm{t}$, $\mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.23-4.32$ $(\mathrm{m}, 2 \mathrm{H}), 4.38-4.44(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{~s}, 4 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}$, 2 H), 7.52 (s, 2H), 7.89 (d, J $=16 \mathrm{~Hz}, 2 \mathrm{H}$), $8.10(\mathrm{~s}, 2 \mathrm{H}), 10.56$ ($\mathrm{s}, 2 \mathrm{H}$), $13.07(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 937\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}+1\right)$: calcd, 937.1478; found, 937.1411.
(S,S)-Dimethyl 6,6'-[3,3'(2,5-Dimethoxy-1,4-phenylene)-diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoro-methyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11k). The compound $11 \mathbf{k}(2.1 \mathrm{mg}, 15 \%)$ was prepared from $12(13.5 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and $\mathbf{1 4 k}(4.2 \mathrm{mg}, 15 \mu \mathrm{~mol})$. $[\alpha]_{\mathrm{D}}{ }^{32}$ $=-56^{\circ}(\mathrm{c}=0.05, \mathrm{THF}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.)_{6}\right): \delta 3.52(\mathrm{dd}, \mathrm{J}=$ $11 \mathrm{~Hz}, 8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78-3.90(m, 2H), 3.88 (s, 6H), 3.98 (s, 6H), 4.23-4.33 (m, 2H), 4.38-4.48 (m, 4H), $7.30(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H})$, $7.53(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 10.56(\mathrm{~s}$, 2H), 13.07 (s, 2H). MS (FAB^{+}) m/z: 939 ($\mathrm{M}^{+}+1$). HRMS (FAB^{+}) for $\mathrm{C}_{42} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}+1\right.$): calcd, 939.1634; found, 939.1699.
(S,S)-Dimethyl 6,6'-[3,3'-(2,3-Diethyl-1,4-phenylene)-diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoro-methyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (111). The compound 111 ($5.5 \mathrm{mg}, 19 \%$) was prepared from $12(26.9 \mathrm{mg}, 60 \mu \mathrm{~mol})$ and $141(8.2 \mathrm{mg}, 30 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}^{31}=$ $-16^{\circ}(\mathrm{c}=0.05, \mathrm{THF}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right): \delta 1.18(\mathrm{t}, \mathrm{J}=8$ $\mathrm{Hz}, 6 \mathrm{H}), 2.85(\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 4 \mathrm{H}), 3.51(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-$ $3.85(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.22-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.48(\mathrm{~m}$, $4 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~s}, 2 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}$, 2 H), $8.11(\mathrm{~s}, 2 \mathrm{H}), 10.54(\mathrm{~s}, 2 \mathrm{H}), 13.06(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}$: $935\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{44} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: cal cd, 935.2049; found, 935.2008.
(S,S)-Dimethyl 6,6'-[3,3'(1,4-Naphthalene)diacryloyl]-bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11m). The compound $\mathbf{1 1 m}$ (3.0 mg , 21\%) was prepared from 12 (13.5 mg , $30 \mu \mathrm{~mol})$ and $14 \mathrm{~m}(4.0 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{32}=-41^{\circ}(\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.53$ ($\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}$), 3.78$3.92(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.25-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.54(\mathrm{~m}$, $4 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{~Hz}, 2 \mathrm{H})$, $8.16(\mathrm{~s}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}), 8.36(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{~Hz}, 2 \mathrm{H}), 8.51$ $(\mathrm{d}, \mathrm{J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 10.60(\mathrm{~s}, 2 \mathrm{H}), 13.09(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right)$ $\mathrm{m} / \mathrm{z}: 929\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+\right.$ 1): calcd, 929.1580; found, 929.1530.
(S,S)-Dimethyl 6,6'-[3,3'-(5,8-Dimethoxy-1,4-naphtha-lene)diacryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluo-romethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11n). The compound 11n ($2.2 \mathrm{mg}, 15 \%$) was prepared from $12(13.5 \mathrm{mg}, 30 \mu \mathrm{~mol})$ and $\mathbf{1 4 n}(4.9 \mathrm{mg}, 15$ $\mu \mathrm{mol}) .[\alpha]_{\mathrm{D}}{ }^{30}=-56^{\circ}\left(\mathrm{c}=0.05\right.$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): δ 3.52 (dd, J $=9 \mathrm{~Hz}, 11 \mathrm{~Hz}, 2 \mathrm{H}$), 3.80-3.87 (m, 2H), 3.88 (s, $6 \mathrm{H})$, $3.89(\mathrm{~s}, 6 \mathrm{H}), 4.23-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.40-4.47(\mathrm{~m}, 4 \mathrm{H}), 6.77$ $(\mathrm{d}, \mathrm{J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 2 \mathrm{H}), 8.16(\mathrm{~s}, 2 \mathrm{H}), 8.77$ $(\mathrm{d}, \mathrm{J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 10.54(\mathrm{~s}, 2 \mathrm{H}), 13.06(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right)$ $\mathrm{m} / \mathrm{z}: 989\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{46} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}\right.$ +1): calcd, 989.1791; found, 989.1769.
(S,S)-Dimethyl 6,6'-[3,3'-(9,10-Anthracene)diacryloyl]-bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (110). The compound $\mathbf{1 1 0}$ ($3.7 \mathrm{mg}, 25 \%$) was prepared from $\mathbf{1 2}$ (13.5 mg , $30 \mu \mathrm{~mol})$ and $140(4.8 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]^{29}=-144^{\circ}(\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.56(\mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-$ $3.85(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 4.22-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.47(\mathrm{~m}$, $4 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, \mathrm{J}=4 \mathrm{~Hz}, 7 \mathrm{~Hz}, 4 \mathrm{H})$, $8.22(\mathrm{~s}, 2 \mathrm{H}), 8.37(\mathrm{dd}, \mathrm{J}=7 \mathrm{~Hz}, 4 \mathrm{~Hz}, 4 \mathrm{H}), 8.55(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}$, $2 \mathrm{H}), 10.64(\mathrm{~s}, 2 \mathrm{H}), 13.11(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 979\left(\mathrm{M}^{+}+\right.$ 1). HRMS (FAB^{+}) for $\mathrm{C}_{48} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 979.1736; found, 979.1787.
(S,S)-Dimethyl 6,6'[3,3'-(1,4-Anthracene)diacryloyl]-bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11p). The compound $11 p$ ($2.3 \mathrm{mg}, 15 \%$) was prepared from 12 (13.5 mg , $30 \mu \mathrm{~mol})$ and $14 \mathrm{p}(4.8 \mathrm{mg}, 15 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{32}=-36^{\circ}(\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 3.54$ (t, J $=10 \mathrm{~Hz}, 2 \mathrm{H}$), 3.783.93 (m, 2H), $3.89(\mathrm{~s}, 6 \mathrm{H}), 4.27-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.57(\mathrm{~m}$, $4 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{~Hz}, 2 \mathrm{H})$, 8.19 (s, 4H), $8.30(\mathrm{dd}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}$, $2 \mathrm{H}), 9.04(\mathrm{~s}, 2 \mathrm{H}), 10.60(\mathrm{~s}, 2 \mathrm{H}), 13.07(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}:$ $979\left(\mathrm{M}^{+}+1\right)$. HRMS (FAB^{+}) for $\mathrm{C}_{48} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8}\left(\mathrm{M}^{+}+1\right)$: calcd, 979.1736; found, 979.1699.
(S,S)-Dimethyl 6,6'-[3,3'-(1,4-(9,10-Anthraquinoyl))di-acryloyl]bis[4-chloromethyl-8-hydroxy-2-trifluoromethyl-1,4,5,6-tetrahydropyrrolo[3,2-e]indole-3-carboxylate] (11q). The compound $\mathbf{1 1 q}(1.6 \mathrm{mg}, 4 \%)$ was prepared from $\mathbf{1 2}$ $(40.4 \mathrm{mg}, 90 \mu \mathrm{~mol})$ and $\mathbf{1 4 q}(15.7 \mathrm{mg}, 45 \mu \mathrm{~mol}) .[\alpha]_{\mathrm{D}}{ }^{32}=-48^{\circ}$ ($\mathrm{c}=0.05$, THF). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 3.53$ (dd, $\mathrm{J}=10 \mathrm{~Hz}$, $9 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.24-4.34(\mathrm{~m}, 2 \mathrm{H})$, $4.41-4.51(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=6$ $\mathrm{Hz}, 3 \mathrm{~Hz}, 2 \mathrm{H}), 8.10-8.19(\mathrm{~m}, 4 \mathrm{H}), 8.21(\mathrm{~s}, 2 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=16$ $\mathrm{Hz}, 2 \mathrm{H}), 10.61(\mathrm{~s}, 2 \mathrm{H}), 13.10(\mathrm{~s}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{FAB}^{+}\right) \mathrm{m} / \mathrm{z}: 1009$ $\left(\mathrm{M}^{+}+1\right)$. $\mathrm{HRMS}\left(\mathrm{FAB}^{+}\right)$for $\mathrm{C}_{48} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{10}\left(\mathrm{M}^{+}+1\right)$: calcd, 1009.1478; found, 1009.1534.

Acknowledgment. We are grateful to Dr. S. Suzue, Kyorin Pharmaceutical Co. Ltd., for many valuable suggestions and encouragement.

References

(1) Martin, D. G.; Chidester, C. G.; Duchamp, D. J .; Mizsak, S. A. Structure of CC-1065 (NSC 298223), a new antitumor antibiotic. J. Antibiot. 1980, 33, 902.
(2) (a) Ichimura, M.; Muroi, K.; Asano, K.; Kawamoto, I.; Tomita, F.; Morimoto, M.; Nakano, H. DC89-A1, a new antitumor antibiotic from streptomyces. J. Antibiot. 1988, 41, 1285. (b) Yasuzawa, T.; Iida, T.; Muroi, K.; Ichimura, M.; Takahashi, K.; Sano, H. Structures of duocarmycins, novel antitumor antibiotics produced by streptomyces sp. Chem. Pharm. Bull. 1988, 36, 3728. (c) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto, I.; Tomita, F.; Nakano, H. Duocarmycin A, a new antitumor antibiotic from streptomyces. J. Antibiot. 1988, 41, 1915. (d) Ogawa, T.; Ichimura, M.; Katsumata, S.; Morimoto, M.; Takahashi, K. New antitumor antibiotics, duocarmycins B1 and B2. J. Antibiot. 1989, 42, 1299.
(3) (a) Ichimura, M.; Ogawa, T.; Takahashi, K.; K obayashi, E.; Kawamoto, I.; Yasuzawa, T.; Takahashi, I.; Nakano, H. Duocarmycin SA, a new antitumor antibiotic from streptomyces sp . J. Anti biot. 1990, 43, 1037. (b) Yasuzawa, T.; Saito, Y.; I chimura, M.; Takahashi, I.; Sano, H. Structure of duocarmycin SA, a potent antitumor antibiotic. J. Antibiot. 1991, 42, 445.
(4) (a) Boger, D. L.; Coleman, R. S.; Invergo, B. J .; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C. Synthesis and evaluation of aborted and extended CC-1065 functional analogues: (+)- and (-)-CPICDPI3. Preparation of key partial structures and definition of an additional functional role of the CC-1065 central and righthand subunits. J. Am. Chem. Soc. 1990, 112, 4623. (b) Hurley, L. H.; Warpehoski, M. A.; Lee, C.-S.; McGovren, J. P.; Scahill, T. A.; Kelly, R. C.; Mitchell, M. A.; Wicnienski, N. A.; Gebhard, I.; J ohnson, P. D.; Bradford, V. S. Sequence specificity of DNA alkylation by the unnatural enantiomer of CC-1065 and its synthetic analogues. J. Am. Chem. Soc. 1990, 112, 4633. (c) Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Prairie, M. D.; Wicnienski, N.; Wierenga, W. Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065. J. Med. Chem. 1988, 31, 590. (d) Chin, H. L.; Dinshaw, J. P. Site-specific covalent duocarmycin A-I ntramolecular DNA triplex complex. J. Am. Chem. Soc. 1992, 114, 10658. (e) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. Duocarmycin-pyrindamycin DNA alkylation properties and identification, synthesis, and evaluation of agents incorporating the pharmacophore of the duocarmycin-pyrindamycin alkylation subunit. Identification of the CC-1065-duocarmycin common pharmacophore. J. Am. Chem. Soc. 1990, 112, 8961. (f) Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329. (g) Sugiyama, H.; H osoda, M.; Saito, I.; Asai, A.; Saito, H. Covalent alkylation of DNA with duocarmycin A. Identification of abasic site structure. Tetrahedron Lett. 1990, 31, 7197 and references therein.
(5) Li, L. H.; DeKoning, T. F.; Kelly, R. C.; Krueger, W. C.; McGovren, J. P.; Padbury, G. E.; Petzold, G. L.; Wallace, T. L.; Ouding, R. J.; Prairie, M. D.; Gebhard, I. Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropapylpyrroloindole analogue. Cancer Res. 1992, 52, 4904.
(6) (a) Asai, A.; Nagamura, S.; Saito, H. A novel property of duocarmycin and its analogues for coval ent reaction with DNA. J. Am. Chem. Soc. 1994, 116, 4171. (b) Nagamura, S.; Asai, A.; Amishiro, N.; K obayashi, E.; Gomi, K.; Saito, H. Synthesis and antitumor activity of duocarmycin derivatives: A-ring pyrrole compounds bearing cinnamoyl groups. J. Med. Chem. 1997, 40, 972.
(7) Fukuda, Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.; Terashima, S. Novel cyclopropapyrroloindole derivative (AT3510) bearing methoxycarbonyl and trifluoromethyl groups. J. Med. Chem. 1999, 42, 1448.
(8) (a) Mitchell, M. A.; Kelly, R. C.; Wicnienski, N. A.; Hatzenbuhler, N. T.; Williams, M. G.; Petzold, G. L.; Slightom, J . L.; Siemieniak, D. R. Synthesis and DNA cross-linking by a rigid CPI dimer. J. Am. Chem. Soc. 1991, 113, 8994. (b) Sun, D.; Hurley, L. H. Analysis of the monoalkylation and cross-linking sequence specificity of bizelesin, a bifunctional alkylation agent related to (+)-CC-1065. J. Am. Chem. Soc. 1993, 115, 5925. (c) Mitchell, M. A.; J ohnson, P. D.; Williams, M. G.; Aristoff, P. A. Interstrand DNA cross-linking with dimers of the spirocyclopropyl alkylating moiety of CC-1065. J. Am. Chem. Soc. 1989, 111, 6428. (d) Seaman, F. C.; Hurley, L. H. Manipulative interplay of the interstrand cross-linker bizelesin with d(TAATTA) 2 to achieve sequence recognition of DNA. J. Am. Chem. Soc. 1996, 118, 10052. (e) Kelly, R. C.; Aristoff, P. A. Novel CC-1065 analogues having two CPI subunits. EP0359454.
(9) Fukuda, Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.; Terashima, S. The novel cyclopropapyrroloindole(CPI) bisalkylators bearing methoxycarbonyl and trifluoromethyl group. Bioorg. Med. Chem. Lett. 1998, 8, 1387.
(10) Fukuda, Y.; Seto, S.; Furuta, H.; Ebisu, H.; Oomori, Y.; Terashima, S. The novel cyclopropapyrroloindole (CPI) bisalkylators bearing 3,3'-(1,4-phenylene)diacryloyl group as a linker. Bioorg. Med. Chem. Lett. 1998, 8, 2003.
(11) Sengupta, S.; Bhattacharya, S. Heck reaction of arenediazonium salts: a palladium-catalysed reaction in an aqueous medium. J. Chem. Soc., Perkin Trans. 1 1993, 1943.
(12) Leeson, P. D.; Emmett, J. C. Synthesis of thyroid hormone analogues. Part 1. Preparation of 3'-heteroarylmethyl-3,5-di-iodo-L-thyronines via phenol-dinitrophenol condensation and relationships between structure and selective thyromimetic activity. J. Chem. Soc., Perkin Trans. 1 1988, 3085.
(13) Showalter, H. D. H.; Berman, E. M.; J ohnson, J. L.; Atwood, J . L.; Hunter, W. E. A facile synthesis of functionalized 9,10anthracenediones via tosylate and triflate phenolic activation. Tetrahedron Lett. 1985, 26, 157.
(14) Weitl, F. L.; Raymond, K. N.; Durbin, P. W. Synthetic enterobactin analogues. Carboxamido-2,3-dihydroxyterephthalate conjugates of spermine and spermidine. J. Med. Chem. 1981, 24, 203.
(15) (a) Cristofaro, M. F.; Chamberlin, A. R. Enantioselective and diastereoselective molecular recognition of cyclic dipeptides by a C2 macrolactam Host. J. Am. Chem. Soc. 1994, 116, 5089. (b) Helms, A.; Heiler, D.; McLendon, G. Electron transfer in bisporphyrin doner-acceptor compounds with polyphenylene spacers shows a weak distance dependence. J. Am. Chem. Soc. 1992, 114, 6227. (c) Leighton, P.; Sanders, J. K. M. Synthesis of bipyridyl-, viologen-, quinone-bridged porphyrins. J. Chem. Soc., Perkin Trans. 1 1987, 2385.
(16) Meyers, A. I.; Mihelich, E. D. Oxazolines. XXII. Nucleophilic aromatic substitution on aryl oxazolines. An efficient approach to unsymmetrically substituted biphenyls and o-alkyl benzoic acids. J. Am. Chem. Soc. 1975, 97, 7383.
(17) Kiggen, W.; Vögtle, F.; Franken, S.; Puff, H. Large oligocyclic cavities for strong cation complexation. Tetrahedron 1986, 42, 1859.

J M 000107X

[^0]: * To whom correspondence should be addressed. Tel: 8128056 2201. Fax: 81 (0) 28057 1293. E-mail: yasumichi.fukuda@mb2. kyorin-pharm.co.jp.
 † Sagami Chemical Research Center.

